A Comparison of Present versus New Chemistry 12 Topics

The following table is meant to give teachers a side-by-side comparison of the topics in the present curriculum versus the topics being presented for the new Chemistry 12 curriculum.

The columns "Unit" and "Present Curriculum Topics" refer to the unit headings and subheadings found in *Hebden: Chemistry 12, A Workbook For Students* because the Workbook was written so as to conform as closely as possible to the present curriculum. (It appears that the new curriculum is also a good fit to the Workbook.)

The following colour-coding is used:

Topics in the present curriculum and in the new Topics in the present curriculum but not in the new Additional comments

("red light" stops using the present topic)

All references below come from the Ministry document for the new curriculum found at: <u>https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/pdf/10-12/science/en_s_12_che_elab.pdf</u>

The following Ministry document location code is used to reference the topics quoted below: PgX. means the new curriculum topic reference is found on page X

A final comment: I contacted a representative of the Ministry of Education with a query as to a particular topic. She informed me that everything listed under **Elaborations** is meant to be a suggestion and is NOT prescriptive. Hence, only the bare-bones outline listed under **Content** on pages 2, 3 and the top of 4 in the above document is **required**. To better distinguish a suggested **Elaboration** from required **Content**, all references to **Content** in the "New Curriculum Topics" column are in **bold italics**. Nevertheless, whereas the Content descriptions lack detail, the Elaborations supply a detailed description of the breadth and depth of the new curriculum, and show a very close alignment to the present curriculum.

Unit	Present Curriculum Topics	New Curriculum Topics
I	REACTION KINETICS	NOTE: This is an OPTIONAL unit. However, be aware that REACTION KINETICS provides the theoretical underpinning required for a good understanding of EQUILIBRIUM.
l.1	Introduction	Pg4. Reaction rate Pg10. Reaction rate: – a quantity produced or consumed over time (negative and positive rates)
1.2	Methods of Measuring Reaction Rates	Pg4. Reaction rate Pg6. Choose a property that can be monitored to determine a reaction rate.
1.3	Factors Affecting Reaction Rates	Pg4. Factors that affect reaction rates Pg7. Compare and contrast factors affecting the rates of both homogeneous and heterogeneous reactions. Pg10. Reaction rate: – heterogeneous and homogeneous reactions – applications/situations when rate must be controlled
I.4	Experimental Measurement of Reaction Rates	Pg4. Reaction ratePg6. Choose a property that can be monitored to determine a reaction rate.Pg7. Determine the rate of a reaction through experiment.Pg8. Calculate the rate of a reaction using experimental data.
1.5	Reaction Rates and Collision Theory	Pg4. Collision theory: - collision geometry Pg11. Collision theory: - relationship between successful collisions and reaction rate
l.6	Enthalpy Changes in Chemical Reactions	Pg4. Chemical equations describing energy effects Pg4. Relate PE, KE and enthalpy (Δ H) during a reaction
l.7	Kinetic Energy Distributions	Pg4. Collision theory: - kinetic energy Pg8. Use a KE distribution curve to explain how changing the temperature or adding a catalyst changes the rate of a reaction.

1.8	Activation Energies	Note: Activation energy is mentioned as an Elaboration in
		Science 10. Pg4. Chemical equations describing energy effects Pg4. Relate PE, KE and enthalpy (ΔH) during a reaction Pg7. Relate the magnitude of the activation energy to the rate of
		the reaction. Pg8. Illustrate how the reversible nature of most chemical reactions can be represented on a PE diagram.
		Pg8. Draw and label PE diagrams for both exothermic and endothermic reactions, including Δ H, activation energy, and the
		energy of the activated complex. Pg9. Dynamic nature of chemical equilibrium: – relationship to PE diagram
		Pg11. Collision theory: – relationship of activated complex, reaction intermediates, and activation energy to PE diagrams
1.9	Reaction Mechanisms	Pg4. Reaction mechanism Pg11. Reaction mechanism: – relate the overall reaction to a series of steps (collisions)
140	Frank Discours of a Departies Machaniam	- rate-determining step
l.10	Energy Diagram of a Reaction Mechanism	 Pg4. Reaction mechanism Pg11. Collision theory: relationship of activated complex, reaction intermediates, and activation energy to PE diagrams
1.11	The Effect of Catalysts on the Activation Energy	Pg4. Effect of a catalyst on a PE diagram Pg8. Analyze PE diagrams for exothermic and endothermic reactions, catalyzed and uncatalyzed reactions.
l.12	The Effect of a Catalyst on the Reaction Mechanism	Pg4. Effect of a catalyst on a PE diagram Pg8. Analyze PE diagrams for exothermic and endothermic reactions, catalyzed and uncatalyzed reactions Pg11. Collision theory: – relationship of activated complex, reaction intermediates, and
l.13	Some Uses of Catalysts	activation energy to PE diagrams <i>Pg4. Applications of catalysts</i>
		Pg11. Applications of catalysts: – platinum in automobile catalytic converters – catalysis in the body – contribution of chlorine from CFCs to ozone depletion
	EQUILIBRIUM	
II.1	The Concept of Dynamic Equilibrium	Pg2. Dynamic nature of chemical equilibrium Pg9. Dynamic nature of chemical equilibrium: – reversible nature of reactions
II.2	The Characteristics of Equilibrium	Pg2. Dynamic nature of chemical equilibrium Pg6. Gather and interpret data on the concentration of reactants and products of a system at equilibrium.
II.3	Predicting Whether a Reaction is Spontaneous or Not	 Pg2. Equilibrium shifts: – effect of enthalpy and entropy on equilibrium Pg7. Predict, with reference to entropy and enthalpy, whether reacting systems will reach equilibrium when: • both favour products • both favour reactants
II.4	Le Chatelier's Principle	 entropy and enthalpy oppose each other Pg.2 Equilibrium shifts: application of Le Chatelier's principle effect of a catalyst Pg9. Dynamic nature of chemical equilibrium: effects of changing concentrations of reactants and products
		Pg9. Equilibrium constant, <i>K_{eq}</i> : – homogeneous and heterogeneous systems – pure solids and liquids
		 effect of changes in temperature, pressure, concentration, surface area, and a catalyst

Page	3
------	---

II.5	Industrial Applications of Equilibrium Principles	Pg9. Application of Le Chatelier's principle: – Haber process
11.6	The Equilibrium Expression and the Equilibrium Constant	 Pg2. Equilibrium constant, K_{eq} Pg9. Equilibrium constant, K_{eq}: homogeneous and heterogeneous systems pure solids and liquids effect of changes in temperature, pressure, concentration, surface area, and a catalyst
11.7	Le Chatelier's Principle and the Equilibrium Constant	Pg2. Equilibrium constant, K_{eq} Pg7. Relate the equilibrium position to the value of K_{eq} .
II.8	Equilibrium Calculations	Pg2. Quantitative problem solving:
		 to evaluate the changes in the value of K_{eq} and in concentrations of substances to determine if a system is at equilibrium and resultant shifts
		Pg7. Quantitative problem solving involving <i>K_{eq}</i> Pg9. Quantitative problem solving:
		 involving the value of K_{eq} and the equilibrium concentration of all species
		 involving the value of K_{eq} and the initial concentrations of all species, and one equilibrium involving the equilibrium concentrations of all species, the value
		of K_{eq} , and the initial concentrations
III	SOLUBILITY EQUILIBRIUM	
III.1	A Review of Solubility	Pg2. Saturated solutions as equilibrium systems
111.2	Calculating Solubility and Ion Concentrations	Pg7. Calculations involving concentrations of ions
III.3	Predicting the Solubility of Salts	Ŭ Ŭ
111.4	Writing Formula, Complete and Net Ionic Equations (Introduces these concepts, which can be re- applied to acid/base systems)	<i>Pg3. Write formulae, complete ionic equations, and net ionic equation for strong and weak acids and bases</i>
III.5	Separating Mixtures of Ions by Precipitation Methods	Pg6. Use a solubility chart to predict whether ions can be separated from solution through precipitation, and outline an experimental procedure that includes compound added, precipitate formed, and method of separation. Note: This is an IDENTICAL Elaboration to the one in the Chemistry 11 curriculum. Pg6. Identify an unknown ion through experimentation involving a qualitative analysis scheme.
III.6	The Solubility Product	Pg2. Equilibrium constant expression, K _{sp} , for a saturated solution Pg2. Quantitative problem solving involving solubility equilibrium concepts Pg7. Calculations involving solubility equilibrium concepts Pg9. Quantitative problem solving:
1		– solubility product, K_{sp} , for a compound when given its solubility
		– solubility product, K_{Sp} , for a compound when given its solubility – the solubility of a compound from its K_{Sp}
111.7	Predicting Whether a Precipitate Will Form	– solubility product, K_{sp} , for a compound when given its solubility

Page 4

III.8	Applying Solubility Principles to Chloride Titrations	Pg6. Devise a method for determining the concentration of a specific ion by titration or gravimetric methods (e.g., concentration of chloride ion using a precipitation reaction with silver ion). Pg7. Calculations involving solubility equilibrium concepts
III.9	Removing Pollution and Hardness from Water by Precipitation Methods	Pg6. Devise a procedure by which ions (e.g. calcium or magnesium) can be removed from hard water.
III.10	The Common Ion Effect and Other Ways to Alter the Solubility of a Salt	Pg6. Predict qualitative changes in the solubility equilibrium on the addition of a common ion or the removal of an ion.
IV	ACIDS, BASES AND SALTS	
IV.1	The Arrhenius Theory of Acids and Bases	Pg3. Different types of acids and bases: – Arrhenius acids and bases
IV.2	Some Common Acids and Bases	
IV.3	The True Nature of H ⁺ (aq) : Background Theory	Note: Not mentioned but is an absolute requirement to be taught!
IV.4	The Brønsted-Lowry Theory of Acids and Bases	<i>Pg3. Different types of acids and bases:</i> <i>– Brønsted-Lowry acids and bases</i> <i>Pg3. Amphiprotic species</i>
IV.5	Conjugate Acids and Bases	Pg3. Different types of acids and bases: – Brønsted-Lowry acids and bases
IV.6	"Strong and Weak" Acids and bases	 Pg3. Equilibrium in weak acid or weak base systems Pg9. Relative strengths of acids and bases in solution: table of relative acid strength equations of strong and weak acids and bases in water
IV.7	The Equilibrium Constant for the Ionization of	Pg3. Equilibrium that exists in water and K _w
	Water	Pg3. Calculate [H ₃ O ⁺] or [OH ⁻] given the other, using K_w Pg8. Quantitative calculations involving:
		• the ionization constant of water (K_W)
IV.8	K_a and K_b	Pg3. Quantitative problem solving involving the acid-base
N/ O		equilibrium constants (K_a and K_b)
IV.9	The Relationship Between K_a and K_b For a Conjugate Pair	Pg3. Quantitative problem solving involving the acid-base
		<i>equilibrium constants (K_a and K_b)</i> Pg9. Quantitative problem solving:
		- Calculate the value of K_b for a base, given the value of K_a for its conjugate acid (or vice versa).
IV.10	The Relative Strengths of Acids and Bases	Pg3. Relative strength of acids and bases in solution Pg9. Relative strength of acids and bases in solution: – electrical conductivity (Note: not mentioned in Chem 12 Workbook, but Chem 11, Section IX.2 The Conductivity of Aqueous Solutions firmly lays out the equivalence between high electrical conductivity and large concentrations of ions.)
IV.11	pH and pOH	Pg3. Calculate $[H_3O^+]$ or $[OH^-]$ from pH and pOH Pg8. Quantitative calculations involving: • pH, pOH, $[H_3O^+]$, and $[OH^-]$
IV. 12	Mixtures of Strong Acids and Bases	 PG, POH, PGH, PGH, PGH, PGH, PGH, PGH, PGH, PG
IV.13	Hydrolysis	Pg3. Hydrolysis of ions in salt solution Pg10. Hydrolysis of ions in salt solutions:
		– A salt solution can be acidic, basic, or neutral (compare K_a and
		K_b values) – An amphiprotic ion can act as a base or an acid in solution
		(compare K_a and K_b values)

Page	5
------	---

IV.14		Pg3. Quantitative problem solving involving the acid-base
	Calculations Involving K _a	equilibrium constants (K_a and K_b) Pg3. Calculation of the pH of a salt solution from relevant data, assuming that the predominant hydrolysis reaction is the only reaction determining the pH Pg8. Quantitative calculations involving:
		 the acid/base equilibrium constants (<i>K_a</i> and <i>K_b</i>) hydrolysis Pg9. Quantitative problem solving:
		– Given the K_a , K_b and initial concentration, calculate any of the
		following: [H ₃ O ⁺], [OH ⁻], pH, pOH.
		 Calculate the value of K_a or K_b, given the pH and initial concentration. Calculate the initial concentration of an acid or base, given the
		appropriate K_a , K_b , pH, or pOH values.
IV.15	Calculations Involving Kb	Pg3. Quantitative problem solving involving the acid-base
		equilibrium constants (K _a and K _b) Pg3. Calculation of the pH of a salt solution from relevant data, assuming that the predominant hydrolysis reaction is the only reaction determining the pH Pg8. Quantitative calculations involving:
		 the acid/base equilibrium constants (<i>K_a</i> and <i>K_b</i>) hydrolysis Pg9. Quantitative problem solving:
		– Given the K_a , K_b and initial concentration, calculate any of the
		following: [H ₃ O ⁺], [OH ⁻], pH, pOH.
		 Calculate the value of K_a or K_b, given the pH and initial concentration. Calculate the initial concentration of an acid or base, given the
		appropriate K_a , K_b , pH, or pOH values.
IV.16	Acid-Base Titrations	Pg3. Titration Pg3. Quantitative calculations involving titration, including concentration, volume and pH Pg8. Quantitative calculations involving: • titration
IV.17	Indicators	<i>Pg3. Indicators</i> <i>Pg3. Quantitative calculations involving the pH in a solution</i>
		 and K_a for an indicator Pg6. Match an indicator's colour in a solution with an approximate pH, using a table of indicators. Pg8. Quantitative calculations involving: indicator Pg10. Indicators: indicators chosen so endpoint coincides with the equivalence point of a titration reaction a mixture of a weak acid and its conjugate base, each with distinguishing colours transition point equilibrium shift as acid or base is added during a titration

Page 6

IV.18	Practical Aspects of Titration	<i>Pg3. Quantitative calculations involving titration, including concentration, volume and pH Pg3. Quantitative calculations involving the pH in a solution</i>
		 and K_a for an indicator Pg6. Design, perform, and analyze a titration experiment involving: primary standards standardized solutions titration curves
		 appropriate indicators Pg8. Interpret titration curves plotted from experimental data. Pg10. Titration: equivalence point (stoichiometric point) of a strong acid-strong
		base titration – equivalence point of a titration involving a weak acid-strong base or strong acid-weak base
IV.19	Buffers	 Pg3. Buffers as equilibrium systems Pg6. Prepare a buffer system. Pg10. Buffers as equilibrium systems: The buffer equilibrium shifts as small quantities of acid or base are added to the buffer. limits to buffer systems
IV.20	Buffers in Biological Systems	Pg3. Buffers as equilibrium systems Pg9. Application of Le Chatelier's principle: – hemoglobin and oxygen in the blood Pg10. Buffers as equilibrium systems: – a common buffer system (e.g., the blood buffer system)
IV.21	Applied Acid-Base Chemistry	Pg3. Applications of acid/base reactions Pg3. Oxides in water Pg3. General environmental problems associated with non- metal oxides reacting with water
V	ELECTROCHEMISTRY	
V.1	Introduction (defining Electrochemistry, Half- Cells, Oxidation, reduction, Oxidizing Agent and Reducing Agent)	Pg4. The oxidation-reduction processPg10. The oxidation-reduction process:– oxidation (loss of electros)– reduction (gain of electrons)
V.2	Oxidation Numbers	Pg4. Balancing redox reactions (when using oxidation #'s) Pg10. The oxidation-reduction process: – oxidation number
V.3	Predicting the Spontaneity of a Redox Reaction	Pg4. Relative strength of oxidizing and reducing agents P10. Relative strengths of oxidizing and reducing agents: The "Standard Reduction Potentials of Half-Cells" table can be used to predict whether a spontaneous redox reaction will occur between any two species.
V.4	Balancing Half-Reactions	Pg4. Balancing redox reactions
V.5	Balancing Redox Equations Using Half- Reactions	Pg4. Balancing redox reactions
	Balancing Redox Equations Using Oxidations	Pg4. Balancing redox reactions
V,6 V.7	Numbers Redox Equations Osing Oxidations	Pg4. Redox titration

Page	7
------	---

V.8	The Electrochemical Cell	Pg.4 Electrochemical cells:
		- half-reactions
		Pg7. Construct an electrochemical cell, determine the half-
		reactions that take place at each electrode of an electrochemical
		cell, and use these to make predictions about the overall reaction
		with regard to movement of ions in the cells and in the circuit, and
		the resulting mass of the electrodes.
V.9	Standard Reduction Potentials	Pg4. Electrochemical cells:
		– cell voltage (E ^o)
		Pg8. Calculate the voltage (E ⁰) of an electrochemical cell.
V.10	Selecting Preferred Reactions	Pg.4 Electrochemical cells:
		– half-reactions
V.11	Applied Electrochemistry	Pg.4 Electrochemical cells:
		 practical applications
		Pg10. Practical applications:
		– lead-acid storage batteries, alkali cells, hydrogen-oxygen fuel
		cells
V.12	Corrosion of Metals: Cause and Prevention	Pg.4 Electrochemical cells:
		- practical applications
		Pg10. Practical applications:
1/ 10		- preventing metal corrosion (e.g., cathodic protection)
V.13	Electrolysis	Pg4. Electrolytic cells: – half-reactions
		– minimum voltage to operate
		– minimum voltage to operate – practical applications
		Pg7.Design and label the parts of an electrolytic cell:
		 used for the electrolysis of a molten binary salt such as NaCl(I)
		• capable of electrolyzing an aqueous salt such as KI(aq) (use of
		overpotential effect not required)
		electroplating an object
		Pg10. Practical applications:
		- metal refining (e.g., zinc, aluminum). Note: See, for example,
		http://www.williamhunter.co.uk/ZINC/electrolytic.htm for a clear
		explanation of electrolytic purification of zinc.